viernes, 2 de abril de 2010

La Máquina de Dios logró recrear el instante siguiente al Big Bang



Es la primera vez que se consigue llevar a cabo un experimento de estas características, un récord mundial en la Historia de la Ciencia que ayudará a entender cómo funciona nuestra galaxia

El acelerador de partículas más grande del mundo (LHC por sus siglas en francés) estableció hoy un nuevo record para las colisiones de alta energía al hacer chocar dos haces de protones al triple de fuerza que la marca anterior.

Este gran colisionador de hadrones hizo chocar los haces como parte de su ambicioso programa para descubrir nuevos detalles acerca de partículas teóricas y microfuerzas que dieron origen al universo.

Las colisiones inician una nueva Era para los investigadores que trabajan en instalaciones subterráneas bajo la frontera franco-suiza.

Los científicos en la sala de control de la Organización Europea de Investigaciones Nucleares (CERN por sus siglas en francés) estallaron en aplausos al registrarse las primeras colisiones. Sus colegas de todo el mundo se conectaron por medio de Internet.

"
 Hemos visto trazas perfectas de las colisiones, el detector funciona perfectamente", explicó la física italiana Fabiola Gianotti, líder de Atlas, nombre con que se conoce a uno de los cuatro equipos que participaron del experimento. "Empieza una nueva Era de la física de partículas. Este es un momento de emoción y quiero felicitar a los responsables del LHC por el excelente trabajo realizado con esta máquina única", agregó.

Las colisiones de dos haces de protones de 3,5 TeV (teraelectronvoltios) cada uno comenzó muy pronto esta mañana, pero 
 el primer intento de lograr el hito falló debido a un problema detectado entre el LHC y el acelerador previo que disparó el sistema de protección de la máquina. La operación se reanudó al mediodía europeo, con la subida paulatina de la energía de los haces hasta los 3,5 TeV previstos. A la una, apenas se había logrado alinear perfectamente los finísimos haces de partículas que circulan a casi la velocidad de la luz. Todos los que rodeaban a Atlas estallaron en aplausos al detectar las primeras colisiones.El director general del CERN, Rolf Heuer, felicitó a todos en el laboratorio de Ginebra por videoconferencia desde Japón, donde estuvo junto al director científico del laboratorio, Sergio Bertolucci. "Es un momento fantástico para la ciencia, creo que es el principio de un largo y emocionante recorrido de la física de partículas", dijo Heuer.

Aunque los detectores han seguido registrando colisiones -unas 30 por segundo en Atlas, explicó Gianotti- los físicos e ingenieros siguen optimizando los haces de partículas, estabilizándolos para mejorar los resultados. Pero en todo el mundo científico se dan por infinitamente satisfecho con el logro de las primeras colisiones.

Sin embargo,
  aún se deberán esperar meses para saber si la llamada "partícula de Dios" –la que explicaría por qué las cosas tiene masa- existe. 
Tras el primer encendido del acelerador
 en septiembre de 2008, un accidentegrave provocado por un cortocircuito y que afectó gravemente a parte de los imanes que lo forman e interrumpió el plan de puesta en marcha. Un año se tardó en reparar los desperfectos. El pasado 20 de noviembre se puso de nuevo en marcha el LHC, con el primer haz de partículas circulando a 0,45 TeV. Diez días después, se aumentó ya la energía hasta 1,18 TeV. Cuando el 16 de diciembre se detuvieron estos primeros ensayos se había logrado hacer colisiones a 2,36 TeV.En este período inicial los detectores registraron más de un millón de colisiones, interesantes para calibrar los equipos pero aún sin descubrimientos científicos. Tras una parada para realizar ajustes, el LHC se encendió de nuevo el 28 de febrero, y el 19 de marzo se alcanzaron los 3,5 TeV. Los expertos del CERN dedicaron todo un mes a hacer pruebas y estabilizar los haces antes de las primeras colisiones de hoy.El plan futuro es tomar datos ininterrumpidamente durante 18 o 24 meses, con una breve parada a finales de este año, en los que se espera hacer los primeros descubrimientos científicos. Después se interrumpirá el funcionamiento del LHC para hacer las mejoras técnicas necesarias para iniciar una nueva fase de trabajo a continuación con el doble de energía: haces a 7 TeV para provocar colisiones a 14 TeV.





A continuación dejo el principal resumen los argumentos y problemas que se podían generar como su explicación negativa, en los que se basa el estudio realizado por éste grupo de expertos científicos:

1.-Rayos cósmicos

El LHC, como otros aceleradores de partículas, recrea el fenómeno natural de los rayos cósmicos en condiciones de laboratorio controladas, lo que permite ser estudiados en más detalle. Los rayos cósmicos son partículas producidas en el espacio sideral, siendo la energía de algunas de ellas mucho mayores que las que se producirán en el LHC. La energía y la frecuencia a la que llegan a la atmósfera de la Tierra se han medido en experimentos durante más de 70 años. Durante miles de millones de años la naturaleza ha generado sobre la Tierra tantas colisiones como un millón de experimentos equivalentes al LHC, y el planeta Tierra todavía existe.

Los astrónomos observan un gran número de cuerpos celestes en todo el universo, que están siendo atravesados constantemente por rayos cósmicos. El universo entero produce más de 10 millones de millones de experimentos como el LHC por segundo. La posibilidad de consecuencias peligrosas contradice lo que los astrónomos observan, las estrellas y las galaxias todavía existen.


2.-Agujeros negros microscópicos

La naturaleza forma agujeros negros cuando algunas estrellas, mucho mayores que el sol, colapsan sobre sí mismas al final de su vida. Concentran una gran cantidad de materia en un espacio muy pequeño. Las especulaciones sobre los agujeros negros microscópicos en el LHC se refieren a partículas producidas en las colisiones de pares de protones, cada uno de los cuales tiene una energía comparable a la de un mosquito volando. Los agujeros negros astronómicos son objetos mucho más pesados que cualquier cosa que se pudiera producir en el LHC.

De acuerdo con las bien conocidas propiedades de la gravedad, descritas por la teoría de la relatividad de Einstein es imposible que agujeros negros microscópicos se puedan producir en el LHC. Existen, sin embargo, algunas teorías especulativas que predicen la producción de dichas partículas en el LHC. Estas teorías predicen que tales partículas se desintegrarían inmediatamente. Por lo tanto los agujeros negros no tendrían tiempo de absorber materia suficiente como para causar efectos macroscópicos. A pesar de que agujeros negros microscópicos estables no se esperan en teoría, el estudio de las consecuencias de su producción por rayos cósmicos demuestra que son inofensivos.

Las colisiones en el LHC y las colisiones de rayos cósmicos con cuerpos celestes como la Tierra se diferencian en que las nuevas partículas producidas en las colisiones del LHC se mueven más despacio que las producidas por rayos cósmicos. Los agujeros negros estables podrían tener carga eléctrica o ser neutros. Si tuvieran carga eléctrica, interaccionarían con la materia ordinaria y se pararían cuando atraviesan la Tierra, se hayan producido en rayos cósmicos o en el LHC. El hecho de que la Tierra exista todavía, descarta la posibilidad de que los rayos cósmicos o el LHC puedan producir agujeros negros microscópicos cargados y peligrosos.

Si los agujeros negros microscópicos estables no tuvieran carga eléctrica, su interacción con la Tierra sería muy débil. Aquéllos producidos por rayos cósmicos pasarían de forma inofensiva a través de la Tierra hacia el espacio, mientras que los producidos en el LHC se podrían quedar en la Tierra. Sin embargo, existen cuerpos celestes mucho más grandes y densos que la Tierra en el universo. Los agujeros negros producidos en colisiones de rayos cósmicos con otros cuerpos como estrellas de neutrinos o enanas blancas se pararían. La existencia de dichos
cuerpos celestes densos en la actualidad, además de la existencia de la Tierra, elimina la posibilidad de que el LHC produzca agujeros negros peligrosos.


3.-Strangelets


Strangelet es el término con el que se denomina a un hipotético trozo microscópico de “materia extraña” que contiene el mismo número de partículas, quarks, de tipo up, down y strange.

De acuerdo con los estudios teóricos más recientes los strangelets se transformarían en materia ordinaria en una milésima parte de un millonésima parte de un segundo. Pero ¿podrían los strangelets fusionarse con la materia ordinaria y cambiarla por “materia extraña”?. La primera vez que se planteó esta cuestión fue en el año 2000 cuando comenzó a funcionar el Colisionador de Iones Pesados Relativistas (RHIC) en Estados Unidos. Un estudio de esa época demostró que no existían razones para preocuparse, y el acelerador RHIC ha funcionado durante ocho años buscando strangelets sin haberlos encontrado.

Durante algunos periodos el LHC funcionará con haces de núcleos pesados, como el RHIC. Los haces del LHC tendrán una energía mayor que el RHIC, lo que hace todavía menos probable que pudieran formarse strangelets. Es difícil que la “materia extraña” pueda agruparse en las altas temperaturas producidas en dichos
colisionadores, de la misma forma que el hielo no se forma en agua caliente. Además los constituyentes estarán más diluidos en el LHC que en el RHIC, lo que hace más difícil que la “materia extraña” pueda agruparse. La producción de strangelets en el LHC es menos probable que el RHIC, y la experiencia en este acelerador ha validado el argumento de que no se pueden producir strangelets.



4.-Burbujas de vacío


Existen especulaciones sobre que el universo no se encuentra en su configuración más estable, y que las perturbaciones causadas por el LHC podrían llevarlo a un estado más estable, llamado burbuja de vacío, en el que no podríamos existir. Si el LHC pudiera hacer esto, también podrían hacerlo las colisiones de rayos cósmicos. Puesto que las burbujas de vacío no se han producido nunca en el universo visible, no se podrán producir en el LHC.

5.-Monopolos magnéticos

Los monopolos magnéticos son partículas hipotéticas con una única carga magnética, bien un polo norte o un polo sur. Algunas teorías especulativas sugieren que, si existen, los monopolos magnéticos podrían producir la desintegración del protón. Estas teorías también predicen que dichos monopolos serían demasiados pesados como para que se pudieran producir en el LHC. Por otra parte, si los monopolos magnéticos fueran lo suficientemente ligeros como para producirse en el LHC, los rayos cósmicos que golpean la atmósfera de la Tierra los hubieran producido ya, y la Tierra los habría parado y atrapado. El hecho de que la Tierra y otros cuerpos celestes sigan existiendo elimina la posibilidad de que los peligrosos monopolos magnéticos que se comerían a los protones fueran lo suficientemente ligeros como para producirlos en el LHC.

Después de todos estos problemas, por fin el pasado 23 de Noviembre se produjo el encendido y puesta en marcha de toda la operación, dando lugar a un sin fin de alegrías y datos que poco a poco irán siendo estudiados por los especialistas. Nosotros no queríamos dejar pasar esta oportunidad de informar sobre ello pero, como siempre, de un modo especial.



Bueno eso fue todo espero que les haya sido utíl con este tema hasta la próxima

0 comentarios:

Publicar un comentario